Heterodimeric Barnase-Barstar Vaccine Molecules: Influence of One versus Two Targeting Units Specific for Antigen Presenting Cells
نویسندگان
چکیده
It is known that targeting of antigen to antigen presenting cells (APC) increases immune responses. However, it is unclear if more than one APC-specific targeting unit in the antigenic molecule will increase responses. To address this issue, we have here made heterodimeric vaccine molecules that each express four different fusion subunits. The bacterial ribonuclease barnase and its inhibitor barstar interact with high affinity, and the barnase-barstar complex was therefore used as a dimerization unit. Barnase and barstar were fused N-terminally with single chain fragment variable (scFv)s targeting units specific for either MHC class II molecules on APC or the hapten 5-iodo-4-hydroxy-3-nitrophenylacetyl (NIP). C-terminal antigenic fusions were either the fluorescent protein mCherry or scFv(315) derived from myeloma protein M315. The heterodimeric vaccine molecules were formed both in vitro and in vivo. Moreover, the four different fused moieties appeared to fold correctly since they retained their specificity and function. DNA vaccination with MHC class II-targeted vaccine induced higher mCherry-specific IgG1 responses compared to non-targeted control. Since mCherry and MHC class II are in trans in this heterodimer, this suggests that heterodimeric proteins are formed in vivo without prior protein purification. Surprisingly, one targeting moiety was sufficient for the increased IgG1 response, and addition of a second targeting moiety did not increase responses. Similar results were found in in vitro T cell assays; vaccine molecules with one targeting unit were as potent as those with two. In combination with the easy cloning strategy, the heterodimeric barnase-barstar vaccine molecule could provide a flexible platform for development of novel DNA vaccines with increased potency.
منابع مشابه
Protein-protein recognition: crystal structural analysis of a barnase-barstar complex at 2.0-A resolution.
We have solved, refined, and analyzed the 2.0-å resolution crystal structure of a 1:1 complex between the bacterial ribonuclease, barnase, and a Cys-->Ala(40,82) double mutant of its intracellular polypeptide inhibitor, barstar. Barstar inhibits barnase by sterically blocking the active site with a helix and adjacent loop segment. Almost half of the 14 hydrogen bonds between barnase and barstar...
متن کاملProtein-protein interaction: a genetic selection for compensating mutations at the barnase-barstar interface.
Barnase and barstar are trivial names of the extracellular RNase and its intracellular inhibitor produced by Bacillus amyloliquefaciens. Inhibition involves the formation of a very tight one-to-one complex of the two proteins. With the crystallographic solution of the structure of the barnase-barstar complex and the development of methods for measuring the free energy of binding, the pair can b...
متن کاملLiposome and polymer-based nanomaterials for vaccine applications
Nanoparticles (NPs) are effective and safe adjuvants for antigen delivery in modern vaccinology. Biodegradable nanomaterials with suitable properties are frequently applied for conjugation or loading with antigens; they protect the antigens from degradation in vivo. NPs are applied as effective delivery system to facilitate antigen uptake by antigen presenting cells (APCs) and especially dendri...
متن کاملRecognition of RNase Sa by the inhibitor barstar: structure of the complex at 1.7 A resolution.
We report the 1.7 A resolution structure of RNase Sa complexed with the polypeptide inhibitor barstar. The crystals are in the hexagonal space group P65 with unit-cell dimensions a = b = 56.9, c = 135.8 A and the asymmetric unit contains one molecule of the complex. RNase Sa is an extracellular microbial ribonuclease produced by Streptomyces aureofaciens. Barstar is the natural inhibitor of bar...
متن کاملA Continuum Electrostatic Analysis of Protein Binding: Barnase–Barstar Complex Formation
Understanding the nature of protein–protein recognition is fundamental to the study of biological processes. The complex between barnase, a bacterial RNase, with its intracellular inhibitor, barstar, is a suitable system for the general problem of molecular recognition since the structures of the proteins have been solved, both separately and in the protein complex. This interaction between bar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012